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FORCE EVALUATION IN THE LATTICE BOLTZMANN METHOD INVOLVING

CURVED GEOMETRY

RENWEI MEI�, DAZHI YUy, WEI SHYYz, AND LI-SHI LUOx

Abstract. The present work investigates two approaches for force evaluation in the lattice Boltzmann

equation: the momentum-exchange method and the stress-integration method on the surface of a body.

The boundary condition for the particle distribution functions on curved geometries is handled with second

order accuracy based on our recent works. The stress-integration method is computationally laborious for

two-dimensional 
ows and in general di�cult to implement for three-dimensional 
ows, while the momentum-

exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional


ows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-

driven channel 
ow; (ii) two-dimensional uniform 
ow past a column of cylinders; (iii) two-dimensional 
ow

past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-

driven 
ow in a circular pipe; and (v) three-dimensional 
ow past a sphere. The drag evaluated by using

the momentum-exchange method agrees well with the exact or other published results.

Key words. lattice Boltzmann method, force evaluation on 
uid-solid interface, momentum-exchange

method, stress-integration method, boundary condition for curved geometries, accuracy, 3-D 
ows

Subject classi�cation. Fluid Mechanics

1. Introduction.

1.1. Background of the lattice Boltzmann equation method. The method of lattice Boltzmann

equation (LBE) solves the microscopic kinetic equation for particle distribution function f(x; �; t), where �

is the particle velocity, in phase space (x; �) and time t, from which the macroscopic quantities (
ow mass

density � and velocity u) are obtained through moment integration of f(x; �; t). Because the solution pro-

cedure is explicit, easy to implement and parallelize, the LBE method has increasingly become an attractive

alternative computational method for solving 
uid dynamics problems in various systems [1, 2, 3, 4]. The

most widely used lattice Boltzmann equation [1, 2, 3, 4] is a discretized version of the model Boltzmann

equation with a single relaxation time approximation due to Bhatnagar, Gross, and Krook (BGK model)

[5],

@tf + � �rf =
1

�
[f � f (0)] ; (1.1)

where f (0) is the Maxwell-Boltzmann equilibrium distribution function and � is the relaxation time. The

mass density � and momentum density �u are the �rst (D + 1) hydrodynamic moments of the distribution
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function f and f (0) in D dimensions. It can be shown that the particle velocity space � can be discretized

and reduced to a very small set of discrete velocities f��j� = 1; 2; : : : ; bg, and the hydrodynamic moments

of f and f (0) as well as their 
uxes can be preserved exactly, because the moment integral can be replaced

by quadrature exactly up to a certain order in � [6, 7, 8, 9]. With velocity space � properly discretized,

Eq. (1.1) reduces to a discrete velocity model of the Boltzmann equation

@tf� + �� �rf� =
1

�
[f� � f (0)� ] ; (1.2)

In the above equation, f�(x; t) � f(x; ��; t) and f
(0)
� (x; t) � f (0)(x; ��; t) are the distribution function and

the equilibrium distribution function of the �th discrete velocity ��, respectively. Equation (1.2) is then

discretized in space x and time t into

f�(xi + e��t; t+ �t)� f�(xi; t) = �1

�
[f�(xi; t)� f (eq)� (xi; t)] ; (1.3)

where � = �=�t is the dimensionless relaxation time and e� is a discrete velocity vector. The coherent

discretization of space and time is done in such a way that �x = e��t is always the displacement vector from

a lattice site to one of its neighboring sites. The equilibrium distribution function f
(eq)
� (xi; t) in the lattice

Boltzmann equation (1.3) is obtained by expanding the Maxwell-Boltzmann distribution function in Taylor

series of u up to second order [6, 7], and can be expressed in general as

f (eq)� = w��

�
1 +

3

c2
(e� � u) + 9

2c4
(e� � u)2 � 3

2c2
u2
�
; (1.4)

where c � �x=�t; �x is the lattice constant of the underlying lattice space; and coe�cient w� depends on the

discrete velocity set fe�g in D spatial dimensions. In what follows, we shall use the lattice units of �x = 1

and �t = 1. The Appendix provides the details of coe�cient w� and the discrete velocity set fe�g for the two-
dimensional nine-velocity model (D2Q9) and the three-dimensional nineteen-velocity model (D3Q19) [10].

Figure 1 shows the discrete velocity sets of the two models. It should be pointed out that there exist other

discrete velocity sets fe�g that have the su�cient symmetry for hydrodynamics [6, 7]. A comparative study

of three three-dimensional LBE models including the �fteen-velocity model (D3Q15), the nineteen-velocity

model (D3Q19), and the twenty-seven-velocity model (D3Q27), in terms of accuracy and computational

e�ciency has been conducted by Mei et al. [11]. It was found that the nineteen-velocity model (D3Q19)

o�ers a better combination of computational stability and accuracy. The D2Q9 and D3Q19 models will be

used in this study for force evaluation in two-dimensional and three-dimensional 
ows, respectively. Equation

(1.3) is conveniently solved in two steps

collision: ~f�(xi; t) = f�(xi; t)� 1

�

h
f�(xi; t)� f (eq)� (xi; t)

i
; (1.5a)

streaming: f�(xi + e��t; t+ �t) = ~f�(xi; t) ; (1.5b)

which is known as the LBGK scheme [1, 2]. The collision step is completely local and the streaming step

is uniform and requires little computational e�ort, which makes Eq. (1.5) ideal for parallel implementation.

The simplicity and compact nature of the LBGK scheme, however, necessitate the use of the square lattices

of constant spacing (�x = �y), and consequently lead to the unity of the local Courant-Friedrichs-Lewy

number, because �t = �x = 1.

1.2. Boundary condition for a curved geometry in the LBE method. Consider a part of an

arbitrary curved wall geometry, as shown in Fig. 2, where the �lled small circles on the boundary, xw, denote
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Fig. 1. Discrete velocity set fe�g. (left) Two-dimensional nine-velocity (D2Q9) model. (right) Three-dimensional

nineteen-velocity (D3Q19) model.

the intersections of the boundary with various lattice-to-lattice links. The fraction of an intersected link in

the 
uid region, �, is de�ned by

� =
kxf � xwk
kxf � xbk : (1.6)

Obviously the horizontal or vertical distance between xb and xw is ��x on the square lattice, and 0 � � � 1.

In Eq. (1.5b), the value of ~f�(xi; t) needs to be constructed according to the location of the boundary and

the boundary conditions, if the grid point xi = xb lies beyond the boundary. In the past, the bounce-

back boundary condition has been use to deal with a solid boundary in order to approximate the no-slip

boundary condition at the solid boundary [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. However, it is

well understood that this bounce-back boundary condition satis�es the no-slip boundary condition with a

second-order accuracy (for the Couette and Poiseuille 
ows) at the location one half lattice spacing (� = 1=2)

outside of a boundary node where the bounce-back collision takes place; and this is only true with simple

boundaries of straight lines parallel to the lattice grid [19, 20, 21]. For a curved geometry, simply placing the

boundary halfway between two nodes will alter the geometry on the grid level and degrade the accuracy of

the 
ow �eld and the force on the body at �nite and higher Reynolds number. To circumvent this di�culty,

Mei and Shyy solved Eq. (1.2) in curvilinear coordinates using a �nite di�erence method to compute f�

[25]. He and Doolen used body-�tted curvilinear coordinates with interpolation throughout the entire mesh,

except at the boundaries where the bounce-back boundary condition is used [26]. In the recent works of

Filippova and H�anel [27] and Mei et al. [28, 11], a second-order accurate boundary condition for curved

geometry was developed in conjunction with the use of Cartesian grids in order to retain the advantages

of the LBE method. An interpolation scheme is employed only at the boundaries to obtain ~f�(xi; t). The

detailed assessment on the impact of the boundary condition on the accuracy of the 
ow �eld has been given

in Ref. [28] for some two-dimensional 
ows and in Ref. [11] for some three-dimensional 
ows.

Because the bounce-back type boundary conditions play an important role in lattice Boltzmann simula-

tions, it is important for us to understand how the boundary conditions work. First of all, one must realize

that it is impossible for any kinetic numerical scheme to impose a given velocity (the Dirichlet boundary

condition) on a given grid node, because the Knudsen layer type of phenomena [29, 30, 31] would be mani-

fested in kinetic schemes [32, 19, 20, 21]. For example, in the Poiseuille and the Couette 
ows, the location

where hydrodynamic boundary conditions are satis�ed are one-half grid spacing away from the boundary

grids where the bounce-back boundary conditions are imposed [19, 20, 21]. For 
ows around an arbitrary

shaped body analytical solutions do not exist. Nevertheless, substantial evidence shows that the bounce-

3
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Fig. 2. Layout of the regularly spaced lattices and curved wall boundary. The circles (�), discs (�), shaded discs (�), and

diamonds (3) denote 
uid nodes, boundary locations (xw), solid nodes which are also boundary nodes (xb) inside solid, and

solid nodes, respectively.

back boundary conditions combined with interpolations, and including the one-half grid spacing correction

at boundaries, are in fact second-order accurate and capable of handling curved boundaries [26, 23, 24, 33].

This point is also demonstrated in the present work.

1.3. Force evaluation and related works. In spite of numerous improvement for the LBE method

during the last several years, one important issue that has not been systematically studied is the accurate

determination of the 
uid dynamic force involving curved boundaries. Needless to say, accurate evaluation

of the force is crucial to the study of 
uid dynamics, especially in 
uid-structure interaction. Several force

evaluation schemes, including momentum exchange [14, 16] and integration of surface stress [26, 34], have

been used to evaluate the 
uid dynamic force on a curved body in the context of the LBE method.

He and Doolen [26] evaluated the force by integrating the total stress on the surface of the cylinder and

the components of the stress tensor were obtained by taking respective velocity gradients. Even though a

body-�tted grid was used, an extrapolation was needed to obtain the stress in order to correct the half-

grid-cell spacing e�ect due to the bounce-back boundary condition. Filippova and H�anel [27] developed

a second-order accurate boundary condition for curved boundaries. However, the 
uid dynamics force on

a circular cylinder asymmetrically placed in a two-dimensional channel was obtained by integrating the

pressure and deviatoric stresses on the surface of the cylinder by extrapolating from the nearby Cartesian

grids to the solid boundary [27, 34]. To gain insight into the method of surface stress integration, it is

instructive to examine the variation of the pressure on the surface of a circular cylinder at �nite Reynolds

number obtained by using the LBE method for 
ow over a column of cylinders (see Ref. [28], and Sec. 3.2).

Figure 3 shows the pressure coe�cient

CP =
p� p1
1
2�U

2

4



Fig. 3. Flow past a column of 2D circular cylinders. Distribution of the pressure coe�cient CP on the surface of a 2D

circular cylinder of radius r = 6:6, and center-to-center distance H=r = 20. The stagnation point is located at � = 180�. The

LBE result denoted by symbols � is obtained with � = 0:6 and Re = 40. The solid line is the result obtained by using a 3D

multi-block, body-�tted grid, and pressure-based Navier-Stokes solver with a much �ner resolution.

on the surface obtained by using second-order extrapolation, where p1 is the far upstream pressure. Only

those boundary points, xw, intersected by the horizontal or vertical velocities, i.e., e1, e3, e5, and e7, are

considered in the result given by Fig. 3. If the boundary points intersected by the links in the diagonal

velocities, i.e., e2, e4, e6, and e8, are also considered, the variation of CP would be more noisy. The

components of the deviatoric stress tensor show a similar noisy pattern. It is not clear how the noise in

the pressure and stresses a�ect the accuracy of the 
uid dynamic force in the stress-integration method.

While the programming in the extrapolation and integration is manageable in two-dimensional (3D) cases,

it is rather laborious in three-dimensional cases. In Fig. 3, the LBE result of CP (�) (indicated by symbol

�) is compared with that obtained by using a 3D multiblock, body-�tted coordinates, and pressure-based

Navier-Stokes solver [35, 36, 37] with a much �ner resolution: 201 points around the cylinder and the smallest

grid size along the radial direction dr = 0:026 (relative to r = 1). Not surprisingly, the result obtained by

using the Navier-Stokes solver with body-�tted grid and high resolution is smoother than the LBE result

with a Cartesian grid of coarser resolution. Nevertheless, the LBE solution still essentially agrees with the

Navier-Stokes solution.

Instead of the stress-integration method, Ladd used the momentum-exchange method to compute the


uid force on a sphere in suspension 
ow [14]. In the 
ow simulation using the bounce-back boundary

condition, the body is e�ectively replaced by a series of stairs. Each segment on the surface has an area of

unity for a cubic lattice. The force on each link [halfway between two lattices at xf and xb = (xf + e��t)

in which xb resides in the solid region] results from the momentum exchange (per unit time) between two

opposing directions of the neighboring lattices

1

�t
[e�f�(xf )� e��f��(xf + e��t)]

in which e�� � �e�. Whereas the momentum-exchange method is very easy to implement computationally,

its applicability and accuracy for a curved boundary have not been systematically studied. To recapitulate,

5



there are two major problems associated with the method of surface stress integration. First, the components

of stress tensor are often noisy on a curved surface due to limited resolution near the body and the use of

Cartesian grids. The accuracy of such a method has not been addressed in the literature. Second, the

implementation of the extrapolation for Cartesian components of the stress tensor to the boundary surface

and the integration of the stresses on the surface of a three-dimensional geometry are very laborious in

comparison with the intrinsic simplicity of the lattice Boltzmann simulations for 
ow �eld. The problems

associated with the method of momentum exchange are as follows. (a) The scheme was proposed for the case

with � = 1=2 at every boundary intersection xw. Whether this scheme can be applied to the cases where

� 6= 1=2, when, for example, the boundary is not straight, needs to be investigated. (b) As in the case of

stress-integration method, the resolution near a solid body is often limited and the near wall 
ow variables

can be noisy. If one uses the momentum-exchange method to compute the total force, it is not clear what

the adequate resolution is to obtain reliable 
uid dynamic force on a blu� body at a given (moderate) value

of Reynolds number, say, Re � O(102).

1.4. Scope of the present work. In what follows, two methods for the force evaluation, i.e., the

stress-integration and the momentum-exchange methods, will be described in detail. The shear and normal

stresses on the wall in a pressure driven channel 
ow will be �rst examined to assess the suitability of the

momentum-exchange method when � 6= 1=2 and analyze the errors incurred. The results on the drag force

for 
ow over a column of circular cylinders using these two methods will be subsequently assessed for the

consistency. The drag coe�cient at Re = 100 are compared with the result of Fornberg [38] obtained by

using a second-order accurate �nite di�erence scheme with su�cient grid resolution. For 
ow over a cylinder

asymmetrically placed in a channel at Re = 100, the unsteady drag and lift coe�cients are computed and

compared with the results in the literature. The momentum-exchange method is further evaluated for three-

dimensional fully developed pipe 
ow and for a uniform 
ow over a two-dimensional array of spheres at �nite

Reynolds number. We found that the simple momentum-exchange method for force evaluation gives fairly

reliable results for the two-dimensional and three-dimensional 
ows.

2. Methods for Force Evaluation in LBE Method.

2.1. Second-order accurate no-slip boundary condition for curved geometry. The analysis of

boundary conditions for a curved boundary in the lattice Boltzmann equation is accomplished by applying

the Chapman-Enskog expansion for the distribution function at the boundary. The following approximation

for the post-collision distribution function on the right-hand side of Eq. (1.5b) can lead to a second-order

accurate no-slip boundary condition [11, 27, 28]

~f��(xb; t) = (1� �) ~f�(xf ; t) + �f��(xb; t) + 2w��
3

c2
e�� � uw ; (2.1)

where

f��(xb; t) = w��(xf ; t)

�
1 +

3

c2
(e� � ubf ) + 9

2c4
(e� � uf )2 � 3

2c2
u2f

�

= f (eq)� (xf ; t) + w��(xf ; t)
3

c2
e� � (ubf � uf ) ; (2.2)

and

ubf = uff = uf (xf + e���t; t) ; � =
(2�� 1)

(� � 2)
; 0 � � <

1

2
; (2.3a)

ubf =
1

2�
(2�� 3)uf +

3

2�
uw ; � =

(2�� 1)

(� + 1=2)
;

1

2
� � < 1 : (2.3b)
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The above treatment is applicable for both the two-dimensional and three-dimensional lattice Boltzmann

models.

By substitution of Eq. (2.2), Eq. (2.1) becomes

~f��(xb; t) = ~f�(xf ; t)� �
h
~f�(xf ; t)� f (eq)� (xf ; t)

i

+w��(xf ; t)
3

c2
e� � (ubf � uf � 2uw) : (2.4)

Thus, the above treatment of curved boundaries can be thought as a modi�cation of the relaxation (the

viscous e�ect) near the wall (with the relaxation parameter �), in additional to a forcing term accounting

for the momentum-exchange e�ect due to the wall.

2.2. Force evaluation based on stress integration. He and Doolen [26] evaluated the force by

integrating the total stresses on the boundary of the cylinder @
,

F =

Z
@


dA n̂ � ��pI+ ��[(r :u) + (r :u)T]
	
; (2.5)

where n̂ is the unit out normal vector of the boundary @
, I is the identity tensor of second rank, r : u

denotes the second rank tensor whose components are @iuj , and T is the tranpose operator. In Ref. [26], a

body-�tted coordinate system together with grid stretching was used such that a large number of grids can

be placed near the body to yield a reliable velocity gradient @iuj . In general, since u is not the primary

variable in the LBE simulations and the evaluation of u using
P

� e�f� based on f�'s su�ers the loss of

accuracy due to the cancellation of two close numbers in f�'s the evaluation of the derivative @iuj will

result in further degradation of the accuracy. Filippova [34] used a similar integration scheme to obtain the

dynamic force on the body for the force on a circular cylinder [27] except that the deviatoric stresses were

evaluated using the non-equilibrium part of the particle distribution function [see Eq. (2.7) below]. However,

since a Cartesian grid was used, the stress vectors on the surface of the body (with arbitrary �) have to

be computed through an extrapolation procedure based upon the information in the 
ow �eld. This leads

to further loss of accuracy for a �nite lattice size �x when the shear-layer near the wall is not su�ciently

resolved.

In Eq. (2.5), the pressure p can be easily evaluated using the equation of state p = c2s�. For D2Q9 and

D3Q19 models, c2s = 1=3 so that p = �=3. The deviatoric stress for two-dimensional incompressible 
ow

�ij = �� (@iuj + @jui) (2.6)

can be evaluated using the non-equilibrium part of the distribution function f (neq)� = [f� � f (eq)� ]

�ij =

�
1� 1

2�

�X
�

f (neq)� (x; t)

�
e�;ie�;j � 1

D
e� � e��ij

�
; (2.7)

where e�;i and e�;j are ith and jth Cartesian component of the discrete velocity e�, respectively. For the


ow past a circular cylinder, a separate set of surface points on the cylinder can be introduced in order

to carry out the numerical integration given by Eq. (2.5). The values of the pressure and each of the six

components of the symmetric deviatoric stress tensor on the surface points can be obtained using a second-

order extrapolation scheme based on the values of p and �ij at the neighboring 
uid lattices. The force

exerting on the boundary @
 is computed as

F =

Z
@


dA n̂ � ��pI+ ��[(r :u) + (r :u)T]
	
extrapolated

: (2.8)

It is worth commenting here that for the two-dimensional 
ow past a cylinder, nearly half of the length of

the entire code is taken up by the above force evaluation procedure.
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2.3. Method based on the momentum exchange. In order to employ the momentum-exchange

method e�ciently, two scalar arrays, w(i; j) and wb(i; j) are introduced. A value of 0 is assigned to w(i; j)

for the lattice site (i; j) that are occupied by 
uid; a value of 1 is assigned to w(i; j) for those lattice nodes

inside the solid body. The array wb(i; j) is set to zero everywhere except for those boundary nodes, xb, where

a value of 1 is assigned. For a given nonzero velocity e�, e�� denotes the velocity in the opposite direction,

i.e., e�� � �e� (see Fig. 2). For a given boundary node xb inside the solid region with wb(i; j) = 1 and

w(i; j) = 1, the momentum exchange with all possible neighboring 
uid nodes over a time step �t = 1 is

X
�6=0

e�

h
~f�(xb; t) + ~f��(xb + e���t; t)

i
[1� w(xb + e���t)] :

Simply summing the contribution over all boundary nodes xb belonging to the body, the total force (acted

by the solid body on the 
uid) is obtained as

F =
X
all xb

X
�6=0

e�

h
~f�(xb; t) + ~f��(xb + e���t; t)

i
[1� w(xb + e���t)] : (2.9)

In the momentum-exchange method the force F is evaluated after the collision step is carried out and

the value of ~f�� at the boundary given by Eq. (2.1) has been evaluated. The momentum exchange occurs

during the subsequent streaming step when ~f��(xb; t+ �t) and ~f�(xf ; t+ �t) move to xf and xb, respectively.

As mentioned in the introductory section, the e�ect of the variable � is not explicitly included, but it is

implicitly taken into account in the determination of ~f��(xb; t + �t). The applicability of Eq. (2.9) will be

examined and validated.

Clearly, the force is proportional to the number of boundary nodes xb in the above formula of F and

the number of the boundary nodes increase linearly with the size of the body in a two-dimensional 
ow.

However, since the force is normalized by �U2r in the formula for CD in two-dimensions [see Eq. (3.9)], the

drag coe�cient CD should be independent of r.

3. Results and Discussions. For straight walls, there is no doubt that Eq. (2.5) together with the

equation of state for pressure and Eq. (2.7) for �ij gives accurate results for the force provided that the f�'s

are accurately computed. To demonstrate the correctness of Eq. (2.9) based on the momentum exchange for

an arbitrary �, we �rst consider the pressure driven channel 
ow (see Fig. 4) for which exact solutions for

the velocity and stresses are known. The second case considered is the two-dimensional 
ow past a column of

circular cylinders at Reynolds number Re = 100 and H=r = 20, where H is the distance between the centers

of two adjacent cylinders. The values of the drag computed using the two force evaluation methods are then

compared with the result of Fornberg [38]. The dependence of the drag on the radius r in the momentum-

exchange method is examined to assess the reliability of this method. The third case is the two-dimensional


ow over a circular cylinder that is asymmetrically placed in a channel at Re = 100 (with vortex shedding).

The time dependence of the drag and lift coe�cients is compared with results in the literature.

We also consider two cases of three-dimensional 
ow. The �rst case is the pressure driven 
ow in a

circular pipe for which the exact solutions for both the velocity pro�le and the wall shear stresses are known.

The assessment for the momentum-exchange method for three-dimensional 
ows will be made �rst in this

case. Finally, the momentum-exchange method will be evaluated by considering the drag on a sphere due to

a uniform 
ow over a sphere in a �nite domain. The details for the 
ow �eld computation can be found in

Refs. [28, 11].

3.1. Two-dimensional pressure-driven channel 
ow. In the case of the channel 
ow, the force

on the top wall (y = H) at a given location x (i = Nx=2 + 1, for example) can be evaluated using the
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Fig. 4. The channel 
ow con�guration in the LBE simulations with an arbitrary �.

momentum-exchange method as follows. The wall is located between j = Ny and Ny � 1 (cf. Fig. 4). The

x and y components of the force on the 
uid at the top wall near the ith node are

Fx = [ ~f6(i; j) + ~f2(i� 1; j � 1)] e6;x + [ ~f8(i; j) + ~f4(i+ 1; j � 1)] e8;x (3.1a)

Fy = [ ~f6(i; j) + ~f2(i� 1; j � 1)] e6;y + [ ~f8(i; j) + ~f4(i+ 1; j � 1)] e8;y

+[ ~f7(i; j) + ~f3(i; j � 1)] e7;y ; (3.1b)

where e�;j denotes the jth Cartesian component of velocity e�. Since �x = 1, Fx and Fy are, e�ectively, the

total shear and normal stresses, �xy and �yy, which include the pressure and the deviatoric stresses, on the


uid element at y = H .

Based on Eq. (2.7), the deviatoric component of the 
uid shear stresses at j = Ny�1 (or y = Ny�3+�)

and Ny�2 (or y = Ny�4+�) can be exactly evaluated based on the nonequilibrium part of the distribution

functions in the 
ow �eld if they are correctly given. A linear extrapolation of the deviatoric shear stresses

to y = H = Ny � 3 + 2� yields

� (neq)xy;w = �xy(j = Ny � 1) +�[�xy(j = Ny � 1)� �xy(j = Ny � 2)] ; (3.2)

where the superscript \(neq)" denotes the value computed from f
(neq)
� , and the subscript w refers to the

value at the wall. The deviatoric normal stress, �
(neq)
yy;w , can be similarly computed. In a fully developed

channel 
ow, the normal component of the deviatoric stress �yy(y) is expected to be zero while the total

normal stress �yy(y) is equal to the negative of the pressure (�p). It needs to be pointed out that this

method of evaluating �
(neq)
xy;w given by Eq. (3.2) for two-dimensional channel 
ow is equivalent to the method

of the surface stress integration based on the extrapolated pressure and the deviatoric stresses on the solid

wall except that no numerical integration on the solid surface is needed.

After the velocity pro�le ux(y) is obtained from f�, the shear stress �xy on the wall can also be calculated

using the near wall velocity pro�le as

��
dux
dy

����
y=H

= ��
(2 +�)

(1 +�)

[0� ux(j = Ny � 1)]

�

��� �

(1 +�)
[ux(j = Ny � 1)� ux(j = Ny � 2)] : (3.3)

In the above, a linear extrapolation is employed to evaluate the velocity derivative (dux=dy)jy=H at the wall.
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Table 3.1

Comparison of 
uid stresses at y = H in a two-dimensional pressure driven channel 
ow with dp=dx = �1:0 � 10�6 in

the lattice units, Ny = 35 and � = 0:6 as a function of �. Column 2, ��exactxy;w given by Eq. (3.4); Column 3, �Fx given

by Eq. (3.1a); Column 4, ��
(neq)
xy;w given by Eq. (3.2); Column 5, ���(dux=dy)jy=H Eq. (3.3); Column 6, �Fy given by

Eq. (3.1b); Column 7, pressure p obtained in the simulation.

� ��exactxy;w � 105 �Fx � 105 ��neqxy;w � 105 ��� dux
dy
jy=H � 105 �Fy p

0.01 1.601 1.6333 1.6010 3.5294 0.3333 0.3333

0.02 1.602 1.6333 1.6020 2.5555 0.3333 0.3333

0.03 1.603 1.6333 1.6030 2.2309 0.3333 0.3333

0.04 1.604 1.6333 1.6040 2.0685 0.3333 0.3333

0.05 1.605 1.6333 1.6050 1.9710 0.3333 0.3333

0.1 1.610 1.6333 1.6100 1.7760 0.3333 0.3333

0.2 1.620 1.6333 1.6200 1.6781 0.3333 0.3333

0.25 1.625 1.6333 1.6250 1.6583 0.3333 0.3333

0.3 1.630 1.6333 1.6300 1.6451 0.3333 0.3333

0.3333 1.633 1.6333 1.6330 1.6385 0.3333 0.3333

0.35 1.635 1.6333 1.6350 1.6357 0.3333 0.3333

0.4 1.640 1.6333 1.6400 1.6285 0.3333 0.3333

0.5 1.650 1.6333 1.6500 1.6184 0.3333 0.3333

0.6 1.660 1.6333 1.6600 1.6214 0.3333 0.3333

0.7 1.670 1.6333 1.6700 1.6244 0.3333 0.3333

0.8 1.680 1.6333 1.6800 1.6274 0.3333 0.3333

0.9 1.690 1.6333 1.6900 1.6305 0.3333 0.3333

0.95 1.695 1.6333 1.6950 1.6321 0.3333 0.3333

0.99 1.699 1.6333 1.6990 1.6335 0.3333 0.3333

Finally, the exact solution for the 
uid shear stress on the wall (y = H) is

� exactxy;w =
1

2

dp

dx
H ; H = Ny � 3 + 2� (3.4)

based on the parabolic velocity pro�le or simple control volume analysis. This exact result can be used to

assess the accuracy of the aforementioned methods for the force evaluation.

In the LBE simulations, the pressure gradient is enforced through the addition of an equivalent body

force after the collision step [26, 11]. While the velocity �eld given by the LBE solution can be unique,

the pressure �eld [thus the density �eld �(x; y)] can only be unique up to an arbitrary constant. In view

of Eq. (3.3), it is di�cult to compare the stresses for di�erent cases if �(i; j) converges to di�erent values

in each case. To circumvent this di�culty, the density �eld in the channel 
ow simulation is normalized by

�(i = 2; j = Ny=2) at every time step. This normalization procedure results in �(x; y) = 1 throughout the

entire computational domain. It is also applied to the three-dimensional 
ow in a circular pipe.

Table 3.1 compares the numerical values of the shear stress for a typical case (Ny = 35, dp=dx = �10�6
in the lattice units, and � = 0:6) based on: � exactxy;w given by Eq. (3.4), Fx given by Eq. (3.1a), �

(neq)
xy;w given

by Eq. (3.2), and ��(dux=dy)jy=H given by Eq. (3.3). Also listed is the comparison between Fy given by

Eq. (3.1b) and �p. All computations are carried out with double precision accuracy.

It is noted that �
(neq)
xy;w is identical to �exactxy;w for all values of �. A closer examination of the shear
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stress pro�le using Eq. (2.7) across the channel reveals that �
(neq)
xy;w (y) is also equal to the exact shear stress

pro�le �exactxy (y), which is linear, despite the errors in the velocity pro�le ux(y) for all values of �. A linear

extrapolation, Eq. (3.2), for a linear pro�le therefore gives the exact wall shear stress. Thus, the exactness

of �
(neq)
xy;w in the LBE simulation of channel 
ow indicates the reliability of the LBE solution for the stress

�eld �
(neq)
ij (x; y) by using Eq. (2.7). However, as Fig. 3 indicates, the accuracy of integrating �

(neq)
ij (x; y) to

obtain the 
uid dynamic force in nontrivial geometries needs to be further investigated, as will be discussed

in the following sections.

For 0 < � < 1, the normal force Fy given by Eq. (3.1b) based on the momentum-exchange method

agrees exactly with the pressure on the wall. This is a rather special quantity since deviatoric component of

the force is identically zero. Nevertheless, the method of the momentum exchange does give a reliable value

for the normal stress.

For the shear (tangential) force, it is observed from Table 3.1 that for �xed dp=dx, Fx does not change

as � increases from 0:01 to 0:99. On the other hand, the exact result �exactxy;w = 1
2 (dp=dx)(Ny � 3 + 2�),

increases linearly with �. Further computations were carried out over a range of Ny (= 35, 67, 99, and

131) and � (= 0:505, 0.51, 0.52, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, and 1.6). The results indicate that the

momentum-exchange method gives the shear stress on the top wall as

Fx =
1

2

dp

dx

�
Ny � 3 +

2

3

�
: (3.5)

That is, Fx is independent of � and �. The error in Fx is zero when � = 1=3. The absolute error attains

the maximum when � = 1, which gives the relative error of 4=3H for Fx. Although the frequently used

momentum-exchange method is a natural choice for the force evaluation in conjunction with the bounce-back

boundary condition for � = 1=2, one must be aware that this method is not exact and the error in the force

evaluation using the momentum-exchange method depends on � and the resolution.

The error in Fx is due to the fact that the derivatives of the velocity �eld are not considered in the

boundary conditions. This can be understood by analyzing Eq. (3.1a). At the steady state, and with the

approximation that

~f� � f (eq)� + f (1)� = f (eq)� � 1

�
w��

3

c2
(e� �r)(e� � u) ; (3.6)

Equation (3.1a) at the top wall becomes

Fx � 2w2�
3

c2
e2 � (ubf + uf � 2uw) ; (3.7)

where the substitution of Eq. (2.4) for ~f6 and ~f8 has been made. The only term in the above equation which

has � dependence is ubf . When 0 � � 1=2, Fx is independent of �, and when 1=2 � � < 1, Fx weakly

depends on � because uw = 0 in this case [see Eqs. (2.3)]. In the case where Fx is obtained by summing

over a set of symmetric lattice points, cancellations in the summation may further weaken the dependence

of Fx on �.

Table 3.1 also shows that for the shear stress based on the derivative of the velocity obtained by using

�nite-di�erence, the loss of accuracy is quite signi�cant for small values of � (� 0:05) when � = 0:6. For

other values of � (� 0:3), the accuracy is comparable with that of Fx. However, as shown in Fig. 5(a),

the accuracy of ��(dux=dy)jy=H based on the near-wall velocity derivative deteriorates as the relaxation

time � increases (from 0.51 to 1.6). To see the cause of the increasing error in ��(dux=dy)jy=H , Fig. 5(b)
shows dimensionless wall velocity, uw=uc, obtained by a three-point second-order Lagrangian extrapolation
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Fig. 5. The LBE simulations of the channel 
ow, with � = 0:2, 1=3, 0.5, and 0.7. The pressure drop is @xp = �1:0�10�6

in lattice units. (a) Ratio between the wall force, ��@yuxjy=H, evaluated by using Eq. (3.3), and the exact value ��exactxy;w =

�H@xp=2, given by Eq. (3.4) as a function of � . (b) Normalized wall slip velocity uw=uc as a function of � .

of the near wall velocity ux(y) as a function of � . The increasing slip velocity uw on the wall with the

increasing relaxation time � was also observed in Ref. [15]. It is the result of increasing particle mean free

path that causes the deviation of the kinetic solution from the hydrodynamic solution. It is clear that the

poor performance of ��(dux=dy)jy=H is associated with the increasing error in the near wall velocity pro�le

as � increases. Since the stress tensor �ij can be calculated directly from f� [see Eq. (2.7)] without the

need for directly computing velocity derivatives, the force evaluation method based on the evaluation of the

velocity gradient in the form of Eq. (2.6) is not recommended.

3.2. Steady uniform 
ow over a column of cylinders. For a uniform 
ow over a column of circular

cylinders of radius r and center-to-center distance H (see the left part of Fig. 6 for illustration), symmetry

conditions for f�'s are imposed at y = �H=2. Most of the details of 
ow �eld simulation can be found in

Ref. [28]. The Reynolds number is de�ned by the diameter of the cylinder d as Re = Ud=�, where U is the

uniform velocity in the inlet. It must be noted that for a consistent determination of the force, the upstream

boundary must be placed far upstream. A shorter distance between the cylinder and the boundary will result

in higher drag. In this study, it is placed at about 20 radii to the left of the center of the cylinder. Reducing

the distance between the boundary and the cylinder to 12.5 radii while keeping the rest of the computational

parameters �xed would increase the drag coe�cient by about 1.8% at Re = 100. The downstream boundary

is located about 25 { 30 radii behind the cylinder to allow su�cient wake development. The simulation is

terminated when the following criterion based on the relative L2-norm error in the 
uid region 
 is satis�ed,

E2 =

vuuuuut

X
xi2


ku(xi; t+ 1)� u(xi; t)k2

X
xi2


ku(xi; t+ 1)k2
� � : (3.8)

In this case, � = 10�6 was chosen for both Re = 10 and 100.

Following Fornberg [38], the drag coe�cient over a circular cylinder of radius r is de�ned as

CD =
jFxj
�U2r

: (3.9)

Figure 7(a) compares CD obtained from: momentum-exchange method, surface stress integration, and �nite

di�erence result of Fornberg [38] using a vorticity-stream function formulation at Re = 100, H=r = 20, and
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Fig. 6. Computational domain for the uniform 
ow past a sphere of radius r. The dashed lines indicate boundaries of

computational domain. (left) Unbounded domain in xy plane, and (right) bounded domain in yz plane.

radius r ranging from 2.8 to 13.2. For r > 8, both the momentum exchange and the stress integration

methods give satisfactory results for CD in comparison with the value of 1.248 given in Ref. [38]. The

small di�erences in CD could be due to the fact that in Ref. [38], the computational domain is much larger

in the downstream direction | the downstream boundary condition is imposed at 300 radii behind the

cylinder in Ref. [38], as opposed to 25 { 30 radii here. This adds credence to the validity of Eq. (2.9) for

evaluating the total force on a body. The values of CD from the momentum-exchange method have a little

less variation than that from the stress integration. Accepting an error of less than 5%, reliable data for

CD can be obtained, using the momentum-exchange method, for r > 5. That is, ten lattice spacings across

the diameter of the cylinder are necessary to obtain reliable values of the force. This is consistent with the

�nding by Ladd [14]. In the range of 5 < r < 7, the stress-integration method produces larger 
uctuations

in the results than the momentum exchange method. For smaller radius, i.e., coarser resolutions, while both

methods give poor results (due to insu�cient resolution), the stress integration method yields much larger

errors.

Figure 7(b) compares CD obtained from the methods of momentum exchange and the stress integration

for Re = 10. The momentum-exchange method seems to gives a converged result at larger r (> 8). Based on

the data for r > 8, an average value of CD � 3:356 is obtained. In contrast, the stress-integration method has

a larger 
uctuation than the large r result from the momentum-exchange method even for r > 8. Averaging

over the results for r > 8, the stress integration gives CD � 3:319. The di�erence between converged results

of two methods is about 1%. For r less than or around 5, the 
uctuation in CD from the stress-integration

method is much larger than that in the momentum-exchange method. The conclusions from the comparisons

in Fig. 7 are as follows: (i) both methods for force evaluation can give accurate results; (ii) the momentum-

exchange method gives more consistent drag; and (iii) in the range of 10 < Re < 100, a resolution of ten

lattice spacings across the diameter of the cylinder are needed in order to obtain consistent and reliable

drag values. In other words, the lattice (grid) Reynolds number Re� (= U=�) should be less than 10 in the

calculations.

In the above results presented in Figs. 7(a) and 7(b), the center of the cylinder is placed on a lattice

grid, thus the computational mesh is symmetric with respect to the geometry of the cylinder. To test the

e�ect of the mesh symmetry on the accuracy of the force evaluation, the calculation of the 
ow at Re = 10

is repeated with di�erent values of the cylinder center o�set �x in the x direction, or �y in the y direction.

The radius of the cylinder is deliberately chosen to be only 6.4 lattice grids. In order to preserve the mirror
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Fig. 7. The drag coe�cient for a uniform 
ow past a column of cylinders over a range of radius r. (a) Re = 100. The

dashed line indicates the value of CD = 1:24 obtained in Ref. [38]. (b) Re = 10. The dashed lines indicate the values of CD

averaged over 4 largest radii.

symmetry of the 
ow in the y direction, we use di�erent boundary conditions for upper and lower boundaries

(at y = �H=2). For �y = 0 while varying �x, we use the symmetric boundary conditions, which maintain

the 
ow symmetry with respect to the center line in the x direction. For �x = 0 while varying �y, we use

the periodic boundary conditions at y = �H=2, which are equivalent to the symmetric boundary conditions

when �y = 0, but better re
ect the 
ow symmetry when �y 6= 0. The results of the drag coe�cient CD

are presented in Table 3.2. The variation of CD due to the change of the center of cylinder o�set from a

grid point is less than 1% when the cylinder diameter is only about 13 lattice spacings. The outcome is

consistent with the expected truncation errors caused by mesh perturbation. We notice that the variation

in CD due to �x is about one order of magnitude smaller than that due to �y. This is precisely because

when �y = 0 the mesh symmetry coincides with the 
ow symmetry in the y direction, and when �y 6= 0

the mesh symmetry is lost. This asymmetry due to �y 6= 0 results in the change of the lift coe�cient from

O(10�14) to O(10�2), which is the same order of magnitude of the variation in CD. It is our observation

that the accuracy of the force evaluation schemes used here is dictated by that of the boundary conditions

at the solid walls. The error due to symmetry of the computational mesh with respect to the geometry of

an object is well bounded. This is also observed in other independent studies [23, 33].

Table 3.2

The e�ect of symmetry of the computational mesh on the force evaluation for the steady uniform 
ow over a column of

cylinders. The Reynolds number Re = 10 (� = 0:6), the radius of the cylinder r = 6:4 (in the lattice unit of �x = 1), and

H=r = 20. The variation of CD due to the change of the center of cylinder o�set from a grid point is less than 1%.

�x = 0, periodic boundary conditions at y = �H=2

�y 0 0.2 0.4 0.6 0.8

CD 3.3661 3.3637 3.3526 3.3526 3.3637

�y = 0, symmetric boundary conditions in y = �H=2

�x 0 0.2 0.4 0.6 0.8

CD 3.3661 3.3666 3.3646 3.3667 3.3692

It is worth noting that the wall shear stress in the channel 
ow obtained by using the method of
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momentum exchange has a relative error proportional to the resolution across the channel. For a resolution

of 10 { 20 lattice spacings across the diameter considered here, the relative error in the drag appears, however,

smaller than in the channel 
ow case. At Re = 100, with r > 10, the average value of the drag obtained by

using the method of momentum exchange has a 1.7% relative error comparing with Fornberg's data [38]. If

the boundary layer thickness is estimated roughly to be 3 � 2r=
p
Re � 6, there are only about six lattice

spacings across the boundary layer over which the velocity pro�le changes substantially. Based on the insight

from the channel 
ow result, it is possible that the deviatoric shear stresses on the surface of the cylinder

that are e�ectively incorporated in the method of momentum exchange su�er comparable levels of error as

in the channel 
ow. The e�ective error cancellation over the entire surface of the body may have contributed

to the good convergence behavior in the drag shown in Figs. 7(a) and 7(b).

3.3. Flow over an asymmetrically placed circular cylinder in channel with vortex shedding.

Sch�afer and Turek [39] reported a set of benchmark results for a laminar 
ow over a circular cylinder of radius

r that is asymmetrically placed inside a channel. In the present study, r = 12:8 is used and the center of

the cylinder coincides with a grid point. The distance from the center of the cylinder to the upper wall

and lower wall is h+ = 4:2r and h� = 4:0r, respectively. This results in �+ = 0:76 for the upper wall and

�� = 0:2 for the lower wall, respectively. The channel inlet has a parabolic pro�le and is placed at four

radii upstream of the cylinder center according to the speci�cation of the benchmark test [39]. This results

in � = 0:2 for the inlet boundary. A zeroth-order extrapolation for f� is used at the exit boundary that is

located 40 radii downstream of the cylinder center. Thus there are a total of 564� 105 square lattices in the


ow �eld. For Re = 2r �U=� = 100 based on the average inlet velocity �U , the use of relaxation time � = 0:55

requires �U � 0:0651.

At this Reynolds number, the 
ow becomes unsteady and periodic vortex shedding is observed. Fig-

ures 8(a), 8(b), and 8(c), respectively, show time-dependent behaviors of the lift coe�cient

CL =
Fy
� �U2r

;

and the drag coe�cient CD [see Eq. (3.9)], and the pressure di�erence

�P =
pf � pb
�0 �U2

;

where pf and pb are the pressures at the front and the back of the cylinder, respectively, and �0 is the constant

density imposed at the entrance. The data of CL, CD , and �P are compared with the benchmark results in

Ref. [39]. We �rst note that the present numerical value of Strouhal number St = 2r= �UT is about 0.3033,

where T is the period of the lift curve. This agrees very well with the range of St values (0.2950 { 0.3050)

given in Ref. [39]. We note that the di�erence in CL(t) between the momentum-exchange method and the

surface stress-integration method is indiscernible graphically. For the drag coe�cient CD(t), it is interesting

to note that although there is about 0.25% di�erence between the results given by the momentum-exchange

method and the surface stress-integration method, both methods of force evaluation give two peaks in the

CD(t) curves. Physically, these two peaks in the CD(t) curve correspond to the existence of a weaker vortex

and a stronger vortex alternately shed behind the cylinder. The di�erence in the strength of the vortices

results from the di�erence: h+=r = 4:2 and h�=r = 4:0 in the passages between the cylinder and the channel

walls. There is no report on the occurrence of these two peaks in Ref. [39]. Instead, a range of the maximum

CD (from 3.22 to 3.24) by di�erent researchers was given. The present value of the higher peak is well within

the range. It is interesting to note that both peaks of CD(t) obtained by the momentum-exchange method
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Fig. 8. The 2D 
ow past a cylinder asymmetrically placed in a channel. The variations of the lift coe�cient CL, the

drag coe�cient CD, and the pressure di�erence �P as functions of time t (after an initial run time t0) are compared with

the benchmark results in Ref. [39]. At the time t0, the lift coe�cient CL(t) attains its maximum value Cmax

L . The dashed

horizontal lines indicate the upper and lower bounds in Ref. [39]. The solid and dashed curves are the results obtained by using

momentum exchange and stress integration, respectively. (a) The lift coe�cient CL(t). Note that the results obtained by using

the two methods are indistinguishable on the graph. (b) The drag coe�cient CD(t). (c) The pressure di�erence �P (t). The

symbol � indicates the value of �P (t0 + T=2) given in Table 3.3, where T (� 1296:5) is the period of CL(t).

are also within the range, as shown in Fig. 8(b). A further re�ned computation of the present problem using

a multiblock procedure [40] with r = 40 in the �ne grid region yield nearly the same results for CD(t) and

CL(t).

We compile in Table 3.3 the values of Strouhal number St, maximum and minimum drag coe�cient

Cmax
D and Cmin

D , maximum and minimum lift coe�cient Cmax
L and Cmin

L , and the pressure di�erence �P

obtained by the LBE methods and other schemes of computational 
uid dynamics given in Ref. [39]. The

value of �P is measured at t0+ T=2, where t0 is the moment when CL(t) reaches its maximum value Cmax
L ,

and T is the periodicity of CL(t). For the LBE simulations, T is between 1296 and 1297 (in the lattice unit

of �t = 1). We use T = 1296:5 in the determination of the Strouhal number St. With a resolution much

coarser than those used in Ref. [39], the LBE results are well within the bounds given in Ref. [39]. This

clearly demonstrates the accuracy of the lattice Boltzmann method.

3.4. Pressure-driven 
ow in a circular pipe. The steady-state 
ow �eld was obtained by using

D3Q19 model with � = 0:52 [11]. Eq. (2.9) is used to evaluate the force on the boundary points along the

circumference of the pipe over a distance of one lattice in the axial direction. The resulting axial force Fx
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Table 3.3

Values of St, Cmax

D
, Cmin

D
, Cmax

L
, Cmin

L
, and �P for the 
ow over a 2D cylinder asymmetrically placed in a channel.

\Momentum" and \Stress" denote, respectively, the momentum-exchange method and the stress-integration method in the LBE

calculations. The CFD results are the bounds in Ref. [39], which does not have data for Cmin

D
and Cmin

L
.

method St Cmax
D Cmin

D Cmax
L Cmin

L �P

Momentum 0.3033 3.2358 3.1771 1.0045 �1:0347 2.4914

Stress 0.3033 3.2275 3.1708 1.0040 �1:0340 2.4914

CFD 0.2950 { 0.3050 3.2200 { 3.2400 | 0.9900 { 1.0100 | 2.4600 { 2.5000

is, equivalently, the force given by �w 2�r�x, where �w is the wall shear stress and r is the pipe radius. For

a fully developed 
ow inside a circular pipe, the exact 
uid shear stress at the pipe wall is given by

�exactw (2�r) = �r2
dp

dx
: (3.10)

We examine the normalized axial force,

� =
Fx

�r2 dp
dx

: (3.11)

Figure 9 shows the normalized coe�cient � over a range of r: 3.5 { 23.5. Except for r � 5, � is rather

close to 1. It was noticed in Ref. [11] that the accuracy of LBE solution for the pipe 
ow is not as good

as that for the two-dimensional channel 
ow due to the distribution of values of � around the pipe. The

accuracy of the drag is dictated by the accuracy of the 
ow �eld if the force evaluation method is exact.

For the pipe 
ow, the error in Fx results from the inaccuracy in the 
ow �eld and the errors in the force

evaluation scheme based on momentum exchange (as seen in the previous section for the two-dimensional

channel 
ow case). For r > 5, the largest error in Fx is about 3.5% and it occurs at r = 15:5. Again,

there is no systematic error in Fx. Given the complexity of the boundary in this three-dimensional 
ow, the

results shown in Fig. 9 are satisfactory in the sense that it adds further credence to the momentum-exchange

method for force evaluation.

Fig. 9. The ratio � between the tangential force Fx on the pipe and its exact value (�r2rp) over a range of pipe radius r.
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3.5. Steady uniform 
ow over a sphere. To limit the computational e�ort, a �nite domain of

�H=2 � y � H=2 and �H=2 � z � H=2, with H=r = 10 is used to compute the 
ow past a sphere of

radius r (see Fig. 6). Two cases are considered: (a) the 
ow past a single sphere, and (b) the 
ow over a

two-dimensional array of spheres (all located at x = 0) with the center of the spheres forming square lattices.

In the former case, the boundary conditions at jy = 1 (y = H=2 corresponds to jy = 2) for f�'s are given by

the following linear extrapolation

f�(jx; 1; jz) = 2 f�(jx; 2; jz)� f�(jx; 3; jz) : (3.12)

The velocity at jy = 2 is set as

u(jx; 2; jz) = u(jx; 3; jz) : (3.13)

Similar treatment is applied at y = H=2 and z = �H=2. In the latter case, symmetry conditions are posed

on f�'s at jy = 1 by using the values of f�'s at jy = 3 (see Ref. [28] for the two-dimensional case). At the

inlet, a uniform velocity pro�le is imposed at jx = 1:5 (half way between the �rst and second lattices). The

upstream boundary is located at 7.5 radii to the left of the sphere center in all simulations.

For 
ow over a sphere, the drag coe�cient is often expressed as

CD = � Fx
1
2�U

2�r2
=

24

Re
� ; � = � Fx

6�rU��
; (3.14)

where � accounts for the non-Stokesian e�ect of the drag. For two types of the boundary conditions at

(y = �H=2 and z = �H=2), �s denotes the non-Stokesian correction for the case where the symmetry

conditions are imposed at (y = �H=2 and z = �H=2) and �1 denotes the results for the case where the

extrapolation for f� is used at (y = �H=2 and z = �H=2) in order to simulate the unbounded 
ow.

Figure 10(a) shows the non-Stokesian coe�cient �1 for r = 3:0, 3.2, 3.4, 3.6, 3.8, 4.0, 5.1, 5.2, 5.4, 5.6,

and 5.8, for H=r = 10 at Re = 10. The relaxation time is � = 0:7. With this range of r, the number of

the boundary nodes on the surface of the sphere increases roughly by a factor of (5:8=3)2 � 3:74; the actual

counts of the boundary nodes xb gives a ratio 2370=546 = 4:35. The largest di�erence is 1.9% between r = 3:0

and r = 3:2 that have the least resolution in the cases investigated. For a uniform 
ow over an unbounded

sphere, an independent computation using a �nite di�erence method based on the vorticity-stream function

formulation with high resolution gives a drag coe�cient � � 1:7986 at Re = 10. The largest di�erence

between this result and the LBE results is 1.36% at r = 3:2. If the LBE data for the drag is averaged over

the range of r, one obtains � � 1:8086, which di�ers from 1.7986 by 0.54%. Hence, the LBE solutions with

3:0 � r � 5:8 yield very consistent values for the drag force. Figure 10(b) shows the non-Stokesian correction

factor �s for a uniform 
ow over a planar array of spheres for 3:0 � r � 5:8 and H=r = 10, at Re = 10. It

is important to note that with the improvement of the surface resolution by a factor of 4.35, there is little

systematic variation in �s(r). The largest deviation from the average value, ��s � 1:963, is 1.1% at r = 5:0. It

is clear that the LBE solution gives reliable 
uid dynamic forces on a sphere at r � 3:5 for a moderate value

of Re. The set of data for �s is inherently more consistent than that for �1 since the symmetry boundary

condition can be exactly speci�ed at y = �H=2 and z = �H=2, while the extrapolation conditions given by

Eqs. (3.12) and (3.13) do not guarantee the free stream condition at y = �H=2 and z = �H=2. Yet, both

�1 and �s exhibit remarkable self-consistency from coarse to not-so-coarse resolutions.

4. Conclusions. Two methods for evaluating the 
uid force in conjunction with the method of lattice

Boltzmann equation for solving 
uid 
ows involving curved geometry have been examined. The momentum-

exchange method is very simple to implement. It is shown in the channel 
ow simulation that momentum-

exchange method is not an exact method. The error in the wall shear stress is inversely proportional to
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Fig. 10. Flow past sphere. Variation of the non-Stokesian correction factor � = �Fx=6�rU�� as a function of sphere

radius r at Re = 10. The dashed lines are values of �(r) averaged over r. (a) The 
ow past a single sphere in an unbounded

�eld (H=r =1). (b) The 
ow past a planar array of spheres (H=r = 10).

the resolution. In two- and three-dimensional 
ows over a blu� body, it can give accurate drag values

when there are at least ten lattice spacings across the body at Re � 100. The method of integrating the

stresses on the surface of the body gives similar results when there is su�cient resolution but it exhibits

much larger 
uctuations than that in the method of momentum exchange when the resolution is limited. In

addition, the stress-integration method requires considerably more e�orts in implementing the extrapolation

and integration on the body surface in comparison with the method of momentum exchange.

It is interesting to note that the momentum-exchange method is perhaps superior to the stress-integration

method because the former method is directly based on the distribution functions while the latter is derived

from further processing of the distribution functions. In addition, the momentum-exchange method uses

interpolations while the stress-integration method uses extrapolations. Often extrapolations are more noisy

and unstable than interpolations. Even with a coarse resolution that does not yield very accurate local

information, accurate force evaluation can be accomplished with the lattice Boltzmann method. Among the

two force evaluation methods, the method of momentum exchange is recommended for force evaluation on

curved boundaries for its simplicity, accuracy, and robustness.
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Appendix A. LBE Models in Two and Three Dimensions.

The nine-velocity (or 9-bit) LBE model on a two-dimensional square lattice, denoted as the D2Q9 model,

has been widely used for simulations of two-dimensional 
ows. For three-dimensional 
ows, there are several

cubic lattice models, such as the �fteen-velocity (D3Q15), nineteen-velocity (D3Q19), and twenty-seven-

velocity (D3Q27) models, which have been used in the literature [10]. All these models have a rest particle

(with zero velocity) in the discretized velocity set fe�j� = 0; 1; : : : ; (b � 1)g. For athermal 
uids, the

equilibrium distributions for the D2Q9, D3Q15, D3Q19, and D3Q27 models are all of the following form
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[6, 7]

f (eq)� = w��

�
1 +

3

c2
(e� � u) + 9

2c4
(e� � u)2 � 3

2c2
u2
�
; (A.1)

where w� is a weighting factor and e� is a discrete velocity, c � �x=�t is the unit speed, and �x and �t are

the lattice constant and the time step, respectively. The discrete velocities for the D2Q9 models are

e� =

8><
>:

(0; 0); � = 0;

(�1; 0) c; (0; �1) c; � = 1; 3; 5; 7;

(�1; �1) c; � = 2; 4; 6; 8;

(A.2)

and the values of the weighting factor w� are

w� =

8><
>:

4
9 ; � = 0;
1
9 ; � = 1; 3; 5; 7;
1
36 ; � = 2; 4; 6; 8:

(A.3)

For the D3Q19 model, the discrete velocities are

e� =

8><
>:

(0; 0); � = 0;

(�1; 0; 0) c; (0; �1; 0) c; (0; 0; �1) c; � = 1{6;

(�1; �1; 0) c; (0; �1; �1) c; (�1; 0; �1) c; � = 7{18 ;

(A.4)

and the weighting factor w� is given by [7]

w� =

8><
>:

1
3 ; � = 0;
1
18 ; � = 1{6;
1
36 ; � = 7{18 :

(A.5)

The discrete velocity sets fe�g for the D2Q9 and D3Q19 models are shown in Fig. 1.

The density and velocity can be computed from f�,

� =
X
�

f� =
X
�

f (eq)� ; (A.6a)

�u =
X
�

e�f� =
X
�

e�f
(eq)
� : (A.6b)

The speed of sound of the above LBE models is

cs =
1p
3
c;

and the equation of state is that of an ideal gas such that

p = c2s � : (A.7)

The viscosity of the 
uid is

� = c2s �;

for the discrete velocity model of Eq. (1.2). It should be noted that the equilibrium distribution function

f
(eq)
� is in fact a Taylor series expansion of the Maxwellian f (0) [6, 7]. This approximation of f

(eq)
� in algebraic

form makes the LBE method valid only in the incompressible 
ow limit u=c! 0.
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Equation (1.2) is often discretized in space x and time t into the lattice Boltzmann equation

f�(xi + e��t; t+ �t)� f�(xi; t) = �1

�
[f�(xi; t)� f (eq)� (xi; t)] ; (A.8)

where � = �=�t. For this LBGK model [1, 2], the viscosity in the Navier-Stokes equation derived from the

above lattice Boltzmann equation is

� =

�
� � 1

2

�
c2s �t : (A.9)

The �1=2 correction in the above formula for � comes from the second-order derivatives of f� when f�(xi+

e��t; t+�t) in Eq. (A.8) is expanded in a Taylor series in u. This correction in � makes the lattice Boltzmann

method formally a second-order method for solving incompressible 
ows [7]. Obviously, the physical and

computational stabilities require that � > 1=2.
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